Policy Search in Reinforcement Learning: A Survey
نویسنده
چکیده
We present a survey of policy search algorithms in reinforcement learning. The foundations of reinforcement learning and the historical development of policy search are discussed. Policy search algorithms are divided and examined along three axes. First, we examine the search methodology utilized by the algorithm. Second, we examine the representational structure of the policy. Finally, we examine the types problems that the algorithms are designed to solve. We conclude by examining practical applications, future trends and other issues that pertain to current day policy search techniques.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملPolicy Search in Continuous Action Domains: an Overview
Continuous action policy search, the search for efficient policies in continuous control tasks, is currently the focus of intensive research driven both by the recent success of deep reinforcement learning algorithms and by the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, incorporating into a common big picture the...
متن کاملA Survey on Policy Search for Robotics
Policy search is a subfield in reinforcement learning which focuses on finding good parameters for a given policy parametrization. It is well suited for robotics as it can cope with high-dimensional state and action spaces, one of the main challenges in robot learning. We review recent successes of both model-free and model-based policy search in robot learning. Model-free policy search is a ge...
متن کاملReinforcement learning in robotics: A survey
Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this...
متن کامل